4.7 Article

Extended Lagrangian Born-Oppenheimer molecular dynamics using a Krylov subspace approximation

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 152, Issue 10, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5143270

Keywords

-

Funding

  1. U.S. Department of Energy Office of Basic Energy Sciences [FWP LANLE8AN]
  2. U.S. Department of Energy through the Los Alamos National Laboratory
  3. National Nuclear Security Administration of the U.S. Department of Energy [892333218NCA000001]

Ask authors/readers for more resources

It is shown how the electronic equations of motion in extended Lagrangian Born-Oppenheimer molecular dynamics simulations [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008); J. Chem. Phys. 147, 054103 (2017)] can be integrated using low-rank approximations of the inverse Jacobian kernel. This kernel determines the metric tensor in the harmonic oscillator extension of the Lagrangian that drives the evolution of the electronic degrees of freedom. The proposed kernel approximation is derived from a pseudoinverse of a low-rank estimate of the Jacobian, which is expressed in terms of a generalized set of directional derivatives with directions that are given from a Krylov subspace approximation. The approach allows a tunable and adaptive approximation that can take advantage of efficient preconditioning techniques. The proposed kernel approximation for the integration of the electronic equations of motion makes it possible to apply extended Lagrangian first-principles molecular dynamics simulations to a broader range of problems, including reactive chemical systems with numerically sensitive and unsteady charge solutions. This can be achieved without requiring exact full calculations of the inverse Jacobian kernel in each time step or relying on iterative non-linear self-consistent field optimization of the electronic ground state prior to the force evaluations as in regular direct Born-Oppenheimer molecular dynamics. The low-rank approximation of the Jacobian is directly related to Broyden's class of quasi-Newton algorithms and Jacobian-free Newton-Krylov methods and provides a complementary formulation for the solution of nonlinear systems of equations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available