4.5 Article

Bone tissue engineering using adipose-derived stem cells and endothelial cells: Effects of the cell ratio

Journal

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE
Volume 24, Issue 12, Pages 7034-7043

Publisher

WILEY
DOI: 10.1111/jcmm.15374

Keywords

ADSC; angiogenesis; bone tissue engineering; HUVEC; osteogenesis

Funding

  1. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [326998133-TRR 225]

Ask authors/readers for more resources

The microvascular endothelial network is essential for bone formation and regeneration. In this context, endothelial cells not only support vascularization but also influence bone physiology via cell contact-dependent mechanisms. In order to improve vascularization and osteogenesis in tissue engineering applications, several strategies have been developed. One promising approach is the coapplication of endothelial and adipose derived stem cells (ADSCs). In this study, we aimed at investigating the best ratio of human umbilical vein endothelial cells (HUVECs) and osteogenic differentiated ADSCs with regard to proliferation, apoptosis, osteogenesis and angiogenesis. For this purpose, cocultures of ADSCs and HUVECs with ratios of 25%:75%, 50%:50% and 75%:25% were performed. We were able to prove that cocultivation supports proliferation whereas apoptosis was unidirectional decreased in cocultured HUVECs mediated by a p-BAD-dependent mechanism. Moreover, coculturing ADSCs and HUVECs stimulated matrix mineralization and the activity of alkaline phosphatase (ALP). Increased gene expression of the proangiogenic markers eNOS, Flt, Ang2 and MMP3 as well as sprouting phenomena in matrigel assays proved the angiogenic potential of the coculture. In summary, coculturing ADSCs and HUVECs stimulates proliferation, cell survival, osteogenesis and angiogenesis particularly in the 50%:50% coculture.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available