4.6 Article

Androgen attenuates the inactivating phospho?Ser-127 modification of yes-associated protein 1 (YAP1) and promotes YAP1 nuclear abundance and activity

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 295, Issue 25, Pages 8550-8559

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.RA120.013794

Keywords

signal transduction; androgens; androgen receptor; YAP1; Hippo; MST1; STK4; protein phosphatase PP2A; protein?protein interaction; post-translational modification; phosphorylation; nuclear translocation; gene transcription; androgen; cell signaling; Hippo pathway; yes-associated protein (YAP); protein phosphorylation; protein serine; threonine phosphatase (PSP); gene transcription; androgen; AR signaling; YAP1 nuclear localization

Funding

  1. National Science Foundation-Division of Molecular and Cellular Biosciences Grant [1832022]
  2. NIMHD, National Institutes of Health [2U54MD007590-32]
  3. Direct For Biological Sciences
  4. Div Of Molecular and Cellular Bioscience [1832022] Funding Source: National Science Foundation

Ask authors/readers for more resources

The transcriptional coactivator YAP1 (yes-associated protein 1) regulates cell proliferation, cell?cell interactions, organ size, and tumorigenesis. Post-transcriptional modifications and nuclear translocation of YAP1 are crucial for its nuclear activity. The objective of this study was to elucidate the mechanism by which the steroid hormone androgen regulates YAP1 nuclear entry and functions in several human prostate cancer cell lines. We demonstrate that androgen exposure suppresses the inactivating post-translational modification phospho?Ser-127 in YAP1, coinciding with increased YAP1 nuclear accumulation and activity. Pharmacological and genetic experiments revealed that intact androgen receptor signaling is necessary for androgen's inactivating effect on phospho?Ser-127 levels and increased YAP1 nuclear entry. We also found that androgen exposure antagonizes Ser/Thr kinase 4 (STK4/MST1) signaling, stimulates the activity of protein phosphatase 2A, and thereby attenuates the phospho?Ser-127 modification and promotes YAP1 nuclear localization. Results from quantitative RT-PCR and CRISPR/Cas9?aided gene knockout experiments indicated that androgen differentially regulates YAP1-dependent gene expression. Furthermore, an unbiased computational analysis of the prostate cancer data from The Cancer Genome Atlas revealed that YAP1 and androgen receptor transcript levels correlate with each other in prostate cancer tissues. These findings indicate that androgen regulates YAP1 nuclear localization and its transcriptional activity through the androgen receptor?STK4/MST1?protein phosphatase 2A axis, which may have important implications for human diseases such as prostate cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available