4.4 Article

Enhancing DNA Crystal Durability through Chemical Crosslinking

Journal

CHEMBIOCHEM
Volume 17, Issue 12, Pages 1163-1170

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cbic.201500610

Keywords

DNA crosslinking; DNA crystals; nanotechnology; thermal stability

Funding

  1. National Science Foundation (NSF) through a CAREER award [DMR1149665]

Ask authors/readers for more resources

Three-dimensional (3D) DNA crystals have been envisioned as a powerful tool for the positional control of biological and non-biological arrays on the nanoscale. However, most DNA crystals contain short duplex regions that can result in low thermal stability. Additionally, because DNA is a polyanion, DNA crystals often require high cation concentrations to maintain their integrity. Here, we demonstrate that a DNA alkylating mustard, bis(2-chloroethyl)amine, can form interstrand crosslinks within a model 3D DNA crystal. The crosslinking procedure did not alter crystal X-ray diffraction properties, but it did significantly improve the overall stability of the crystals under a variety of conditions. Crosslinked crystals showed enhanced stability at elevated temperature and were stable at Mg2+ concentrations as low as 1mm. Remarkably, the crosslinked crystals showed significant resistance to DNaseI treatment, while also having improved longevity in tissue culture mediums. Characterization of the crosslinked species suggest that there are multiple crosslinking sites, but that the most prevalent interstrand crosslink involves an unpaired 3-terminal guanosine residue. The improved stability of these DNA crystals suggests that simple treatment with alkylating reagents might be sufficient to stabilize crystals and other DNA constructs for improved functionality in biological and non-biological applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available