4.6 Article

Polydopamine-mediated polypyrrole/doxorubicin nanocomplex for chemotherapy-enhanced photothermal therapy in both NIR-I and NIR-II biowindows against tumor cells

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 137, Issue 41, Pages -

Publisher

WILEY
DOI: 10.1002/app.49239

Keywords

biomaterials; biomedical applications; drug delivery systems

Ask authors/readers for more resources

Photothermal therapy (PTT) is featured by the desirable spatiotemporal controllability and excellent specificity, which has been identified as one of the important tumor treatment methods. Although promising, the efficacy of PTT is still limited and needs further improvement. In this work, a kind of PPy-PDA-PEG@DOX nanocomplex was designed and constructed for chemotherapy-enhanced PTT in both near-infrared (NIR)-I and NIR-II biowindows against tumor cells, which was integrated by the polypyrrole (PPy) core, polydopamine (PDA) shell, polyethylene glycol (PEG) linkage, and doxorubicin (DOX) payload. This constructed PPy-PDA-PEG@DOX nanocomplex was uniform in size around 56.3 nm, and with the optimized DOX loading content at 37.4%. The photothermal conversion efficiencies of this nanocomplex were calculated to be around 23.1 and 30.8% in NIR-I and NIR-II biowindows, respectively, showing good photothermal capacity and stability. The loaded DOX could be released in stimuli-responsive manners. The therapeutic efficacy was enhanced by PPy-PDA-PEG@DOX nanocomplex, indicating the high effectiveness of chemotherapy-enhanced phototherapy. This developed PPy-PDA-PEG@DOX nanocomplex shows promising applications in tumor treatment applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available