4.6 Article

Multiple dimensions of dietary diversity in large mammalian herbivores

Journal

JOURNAL OF ANIMAL ECOLOGY
Volume 89, Issue 6, Pages 1482-1496

Publisher

WILEY
DOI: 10.1111/1365-2656.13206

Keywords

community phylogenetics; food web networks; grazer-browser continuum; megafauna; niche partitioning; specialism-generalism trade-off; ungulate foraging ecology

Ask authors/readers for more resources

Theory predicts that trophic specialization (i.e. low dietary diversity) should make consumer populations sensitive to environmental disturbances. Yet diagnosing specialization is complicated both by the difficulty of precisely quantifying diet composition and by definitional ambiguity: what makes a diet 'diverse'? We sought to characterize the relationship between taxonomic dietary diversity (TDD) and phylogenetic dietary diversity (PDD) in a species-rich community of large mammalian herbivores in a semi-arid East African savanna. We hypothesized that TDD and PDD would be positively correlated within and among species, because taxonomically diverse diets are likely to include plants from many lineages. By using DNA metabarcoding to analyse 1,281 faecal samples collected across multiple seasons, we compiled high-resolution diet profiles for 25 sympatric large-herbivore species. For each of these populations, we calculated TDD and PDD with reference to a DNA reference library for local plants. Contrary to our hypothesis, measures of TDD and PDD were either uncorrelated or negatively correlated with each other. Thus, these metrics reflect distinct dimensions of dietary specialization both within and among species. In general, grazers and ruminants exhibited greater TDD, but lower PDD, than did browsers and non-ruminants. We found significant seasonal variation in TDD and/or PDD for all but four species (Grevy's zebra, buffalo, elephant, Grant's gazelle); however, the relationship between TDD and PDD was consistent across seasons for all but one of the 12 best-sampled species (plains zebra). Our results show that taxonomic generalists can be phylogenetic specialists, and vice versa. These two dimensions of dietary diversity suggest contrasting implications for efforts to predict how consumers will respond to climate change and other environmental perturbations. For example, populations with low TDD may be sensitive to phylogenetically 'random' losses of food species, whereas populations with low PDD may be comparatively more sensitive to environmental changes that disadvantage entire plant lineages-and populations with low dietary diversity in both taxonomic and phylogenetic dimensions may be most vulnerable of all.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available