4.8 Article

Small phytoplankton dominate western North Atlantic biomass

Journal

ISME JOURNAL
Volume 14, Issue 7, Pages 1663-1674

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41396-020-0636-0

Keywords

-

Funding

  1. NASA NAAMES grant [NNX15AE70G]
  2. NSF [DEB-1639033]
  3. Applied Physics Laboratory Science and Engineering Enrichment Development (SEED) fellowship
  4. European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant [749591]
  5. [GBMF3788]
  6. Marie Curie Actions (MSCA) [749591] Funding Source: Marie Curie Actions (MSCA)
  7. NASA [803532, NNX15AE70G] Funding Source: Federal RePORTER

Ask authors/readers for more resources

The North Atlantic phytoplankton spring bloom is the pinnacle in an annual cycle that is driven by physical, chemical, and biological seasonality. Despite its important contributions to the global carbon cycle, transitions in plankton community composition between the winter and spring have been scarcely examined in the North Atlantic. Phytoplankton composition in early winter was compared with latitudinal transects that captured the subsequent spring bloom climax. Amplicon sequence variants (ASVs), imaging flow cytometry, and flow-cytometry provided a synoptic view of phytoplankton diversity. Phytoplankton communities were not uniform across the sites studied, but rather mapped with apparent fidelity onto subpolar- and subtropical-influenced water masses of the North Atlantic. At most stations, cells < 20-mu m diameter were the main contributors to phytoplankton biomass. Winter phytoplankton communities were dominated by cyanobacteria and pico-phytoeukaryotes. These transitioned to more diverse and dynamic spring communities in which pico- and nano-phytoeukaryotes, including many prasinophyte algae, dominated. Diatoms, which are often assumed to be the dominant phytoplankton in blooms, were contributors but not the major component of biomass. We show that diverse, small phytoplankton taxa are unexpectedly common in the western North Atlantic and that regional influences play a large role in modulating community transitions during the seasonal progression of blooms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available