4.7 Article

Ott-Antonsen attractiveness for parameter-dependent oscillatory systems

Journal

CHAOS
Volume 26, Issue 10, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4963371

Keywords

-

Funding

  1. European Union [642563]

Ask authors/readers for more resources

The Ott-Antonsen (OA) ansatz [Ott and Antonsen, Chaos 18, 037113 (2008); Chaos 19, 023117 (2009)] has been widely used to describe large systems of coupled phase oscillators. If the coupling is sinusoidal and if the phase dynamics does not depend on the specific oscillator, then the macroscopic behavior of the systems can be fully described by a low-dimensional dynamics. Does the corresponding manifold remain attractive when introducing an intrinsic dependence between an oscillator's phase and its dynamics by additional, oscillator specific parameters? To answer this, we extended the OA ansatz and proved that parameter-dependent oscillatory systems converge to the OA manifold given certain conditions. Our proof confirms recent numerical findings that already hinted at this convergence. Furthermore, we offer a thorough mathematical underpinning for networks of so-called theta neurons, where the OA ansatz has just been applied. In a final step, we extend our proof by allowing for time-dependent and multi-dimensional parameters as well as for network topologies other than global coupling. This renders the OA ansatz an excellent starting point for the analysis of a broad class of realistic settings. Published by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available