4.7 Article

Genetic Dissection of Hypertrophic Cardiomyopathy with Myocardial RNA-Seq

Journal

Publisher

MDPI
DOI: 10.3390/ijms21093040

Keywords

hypertrophic cardiomyopathy; RNA-seq; pathogenic variants; differential gene expression; gene network

Ask authors/readers for more resources

Hypertrophic cardiomyopathy (HCM) is an inherited disorder of the myocardium, and pathogenic mutations in the sarcomere genes myosin heavy chain 7 (MYH7) and myosin-binding protein C (MYBPC3) explain 60%-70% of observed clinical cases. The heterogeneity of phenotypes observed in HCM patients, however, suggests that novel causative genes or genetic modifiers likely exist. Here, we systemically evaluated RNA-seq data from 28 HCM patients and 9 healthy controls with pathogenic variant identification, differential expression analysis, and gene co-expression and protein-protein interaction network analyses. We identified 43 potential pathogenic variants in 19 genes in 24 HCM patients. Genes with more than one variant included the following: MYBPC3, TTN, MYH7, PSEN2, and LDB3. A total of 2538 protein-coding genes, six microRNAs (miRNAs), and 1617 long noncoding RNAs (lncRNAs) were identified differentially expressed between the groups, including several well-characterized cardiomyopathy-related genes (ANKRD1, FHL2, TGFB3, miR-30d, and miR-154). Gene enrichment analysis revealed that those genes are significantly involved in heart development and physiology. Furthermore, we highlighted four subnetworks: mtDNA-subnetwork, DSP-subnetwork, MYH7-subnetwork, and MYBPC3-subnetwork, which could play significant roles in the progression of HCM. Our findings further illustrate that HCM is a complex disease, which results from mutations in multiple protein-coding genes, modulation by non-coding RNAs and perturbations in gene networks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available