4.7 Article

Risk-constrained optimal operation of fuel cell/photovoltaic/battery/grid hybrid energy system using downside risk constraints method

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 45, Issue 27, Pages 14108-14118

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2020.03.090

Keywords

Residential consumers; Hybrid energy system; Downside risk constraints; Expected downside risk; Risk-neutral strategy; Risk-averse strategy

Funding

  1. Shaanxi Innovation Capability Support Plan [2018TD-036]
  2. Shaanxi Natural Science Basic Research Project [S2019-JC-YB-2897]
  3. Research Project of Graduate Education and Teaching Reform of Xi'an Technological University

Ask authors/readers for more resources

Residential consumers have electrical and thermal loads. Therefore they can be utilized hybrid thermal and electrical energy systems to procure their required energy. In the proposed system, in order to supply residential loads, a hybrid energy system (HES) is proposed which consists of photovoltaic/solid oxide fuel cell/thermal and electrical storages/boiler. Also, the uncertain parameters such as thermal and electrical loads, electricity market price, and solar irradiation are considered in the stochastic formulation. Uncertain parameters can be led to financial risks in the system operation. In order to measure imposed risks, in this paper, a novel risk management method called downside risk constraints method is used to model the financial risks imposed from the uncertain parameters. According to obtained results, the operator of the hybrid energy systemby utilization of the downside risk constraints method has obtained a strategy that is scenario independent. In other words, the downside risk constraints method by minimizing the imposed risks introduced a zero-risk strategy which operation cost would not increase by changing the scenario. Results are shown that system operators by paying 1.3% more expected cost ($ 40.22 instead of $ 39.69), can make its operation independent of the scenario. Also, riskbased operational strategies of the proposed hybrid energy system are reported in the results as graphical results. The proposed risk-measurement operation problem of the designed hybrid energy system is formulated as a mixed-integer linear programming (MILP) model and modeled by GAMS software using CPLEX solver. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available