4.7 Article

Morphology-controllable formation of MOF-Derived C/ZrO2 @1T-2H MoS2 heterostructure for improved electrocatalytic hydrogen evolution

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 45, Issue 29, Pages 14831-14840

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2020.03.184

Keywords

Electrocatalytic hydrogen evolution; MoS2; Morphology controlling; Phase engineering; Metal-organic framework; Heterostructure

Funding

  1. Natural Science Foundation of Jiangsu Province [BK20170175]
  2. Foundation of Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University [JDSJ2018-02]
  3. Central Laboratory, School of Chemical and Material Engineering, Jiangnan University

Ask authors/readers for more resources

Though MoS2 has been regarded a promising alternative to Pt for catalyzing hydrogen evolution reaction (HER), a transition from its natural poorly conductive 2H phase to metastable 1T phase is necessary, which often requires harsh experimental conditions. Herein, using a metal-organic framework (MOF) material (UiO-66) as sacrificing template, we proposed a facile solvothermal strategy to synthesize C/ZrO2@MoS2 nanocomposites whose morphology and phase could be effectively engineered simply by controlling reac-tion time. The optimized double yolk-shell structure allowed a stable hybridization of 1T-and 2H-MoS2, which exhibited improved HER activity (overpotential of 55 mV at 10 mA/cm(2) and 58 mV/dec for Tafel slope) and considerable durability. Synergism of ZrO2-MoS2 heterointerface induced active sites and energetic favorable phase mixing of MoS2 is considered responsible for the sufficient electrocatalytic capability of our composite. Our work may offer new scientific insights into a cost-effective method for further enhancing the HER performance of MoS2-based nanohybrids. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available