4.7 Article

Experimental investigations of fracturing fluid flowback and retention under forced imbibition in fossil hydrogen energy development of tight oil based on nuclear magnetic resonance

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 45, Issue 24, Pages 13256-13271

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2020.03.054

Keywords

Tight sandstone; Nuclear magnetic resonance; Forced imbibition; Fracturing fluid flowback; Water retention

Funding

  1. National Science and Technology Major Project [2016ZX05046004]

Ask authors/readers for more resources

Experimental works have proved that imbibition under forced pressure (FP, the difference between hydraulic fluid pressure and original pore pressure) has a positive effect on fossil hydrogen energy development in tight oil reservoir. However, the knowledge of the influence of imbibition under forced pressure (forced imbibition, FI) on fracturing fluid flowback and water retention is still limited. In this paper, experiments were designed and conducted to reveal the mechanism of fracturing fluid flowback and water retention under imbibition effect in tight sandstones. As a comparison, unconsolidated sandstones were also investigated in this study. Core samples were divided into two categories: the imbibition ones (treated by imbibition) and the filtration ones (treated by displacement), in accordance with the real oil-water distribution after well shut-in. An imbibition core and a filtration core were stitched together to conduct a flowback experiment. During the experiment, fluid distribution in different pore sizes was monitored continuously by using a low-field nuclear magnetic resonance device. Results show that the flowback recovery in tight sandstones is much lower than that in unconsolidated sandstones due to the difference of pore structure. Meanwhile, forced imbibition leads to higher oil recovery than spontaneous imbibition (SI) in tight sandstones since forced pressure enhances water imbibition. The water imbibed into small-macro and macro pores contributes the major flowback recovery, but the imbibed water in micro pores is rather difficult to displace and finally retains in these pores during the flowback process. Overall, forced imbibition not only enhances oil recovery but also increases water retention, explaining the mechanism of well productivity increase by using the shut-in method in the field. This study can help to clarify the influence of forced imbibition on fracturing fluid flowback and enhancement of fossil hydrogen development, and further provide guidance for flowback designs. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available