4.6 Article

CFD simulation of a packed bed industrial absorber with interbed liquid distributors

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijggc.2020.102983

Keywords

Carbon capture; Reactive absorption; Multi packed bed; Structured packing; Computational fluid dynamics (CFD)

Funding

  1. Korea Institute of Energy Technology Evaluation and Planning (KETEP) - Korea government (MOTIE) [20172010202070]
  2. Korea Evaluation Institute of Industrial Technology (KEIT) [20172010202070] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

CO2 absorption processes at industrial scale are usually carried-out in multi-bed columns. However, the design, modelling and simulation of CO2 absorbers are usually executed with simplified single bed columns that do not represent the full design realities of industrial-scale absorbers; limiting the applicability of such results to industrial processes. In this study, a CFD simulation of an MEA absorption process for the removal of CO2 gas on an AMT-SP 350Y structured packing was executed for an industrial-scale pilot plant. The CFD simulation was carried out for three different absorber configurations (Type A, Type B, and Type C). The liquid hydrodynamics, pressure drop, and CO2 removal efficiencies were studied and compared among the three types. Results from the Type A (single bed) and Type B (double bed) absorbers were found to have deviated from the actual plant data while the Type C, with 5-beds and four, interbed liquid distributors was observed to give the best performance as a true representation of the industrial absorber. A two-parameter validation in terms of pressure drop and CO2 removal efficiency was carried out between the pilot plant and the CFD simulation with a maximum discrepancy of 5.2% between the results. On the parametric study of the impact of varying CO2 loadings on absorption efficiencies, it was found and subsequently recommended that keeping the CO2 loading up to 30 mol % will ensure an efficient carbon capture. Further parametric studies were also performed to ascertain the effect of varying gas flow rates on the absorption process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available