4.6 Article

A novel approach for multi-objective optimal scheduling of large-scale EV fleets in a smart distribution grid considering realistic and stochastic modeling framework

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijepes.2019.105617

Keywords

Smart grid; Energy management; Electric vehicle; Vehicle to grid; Multi-objective optimization

Ask authors/readers for more resources

The ever-increasing number of grid-connected electric vehicles (EVs) has led to emerging new opportunities and threats in electrical distribution systems (DS). Developing a realistic model of EV interaction with the DS, as well as developing a strategy to optimally manage these interactions in line with distribution system operators (DSOs) intentions, are the most important prerequisites for gaining from this phenomenon especially in modem smart distribution systems (SDS). In this paper, a comprehensive model describing the electric vehicle integration to an SDS is presented by considering the real-world data from EV manufacturers and DSOs. Moreover, a novel energy management strategy (EMS) based on the multi-objective optimization problem (MOOP) is developed to fulfill the operational objectives of DSO and EV owner, including peak load shaving, loss minimization, and EV owner profit maximization. In this regard, an innovative dimension reduction approach is presented, to make it feasible to apply the heuristic optimization methods to a MOOP with a large number of decision variables. Thanks to this method, the improved electromagnetism like algorithm (IEMA) is employed to perform the multi-objective energy scheduling for a large-scale EV fleet. In addition, a novel method is devised for estimating the optimal hosting capacity of an SDS in adopting EVs without the need for sophisticated computations. The presented method is applied to the modified IEEE-33 bus test system. Obtained results reveal that employment of a realistic model concludes to more accurate results than a simplified model. In addition, the efficiency of the proposed EMS in satisfying EV owner and DSO objectives are approved by analyzing obtained computation results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available