4.3 Article

An EBV-Based Plasmid Can Replicate and Maintain in Stem Cells

Journal

BIOTECHNOLOGY PROGRESS
Volume 31, Issue 6, Pages 1579-1585

Publisher

WILEY
DOI: 10.1002/btpr.2153

Keywords

EBV-based plasmid; EBNA-1; oriP; stem cells

Funding

  1. Tarbiat Modares University
  2. Iran National Science Foundation [88000962]
  3. Stem Cell Technology Research Center

Ask authors/readers for more resources

Viral vectors have a wide range of applications in biology, particularly in gene therapy. Based on their integration capacity, viral vectors are classified as either integrating or non-integrating vectors. Although integrating vectors, such as lentivectors, have the ability to direct prolonged expression of exogenous genes, manipulation of the host genome is an inappropriate feature of these gene delivery tools. Non-integrating vectors, such as episomal replicating plasmids, can replicate and persist in host cells for long periods without any chromosomal interruption. These advantages made them good tools for gene induction purposes in gene therapy and basic studies. Due to the necessity of gene induction in stem cells for study of mammalian development and targeted differentiation, the use of integrating vectors for prolonged expression of genes of interest has been developed. Application of replicating plasmids can overcome some drawbacks associated with integrating vectors, although replication and maintenance of these plasmids can differ between cell types. Previously, it has been shown that such plasmids can be maintained in human embryonic stem cells for more than one month, but the rate of the plasmid replication during the host cell cycle has not been elucidated. In the present study, we showed that an EBV-based plasmid can replicate simultaneously with host in pluripotent and multipotent human and mouse stem cells and can be sustained for long time periods in dividing cells. (C) 2015 American Institute of Chemical Engineers

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available