4.1 Article

Interplanetary transmissions of life in an evolutionary context

Journal

INTERNATIONAL JOURNAL OF ASTROBIOLOGY
Volume 19, Issue 4, Pages 335-348

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S1473550420000099

Keywords

Astrobiology; bet hedging; lithopanspermia; Mars

Ask authors/readers for more resources

The theory of lithopanspermia proposes the natural exchange of organisms between solar system bodies through meteorites. The focus of this theory comprises three distinct stages: planetary ejection, interplanetary transit and planetary entry. However, it is debatable whether organisms transported within the ejecta can survive all three stages. If the conjecture is granted, that life can indeed be safely transmitted from one world to another, then it is not only a topic pertaining to planetary science but also biological sciences. Hence, these stages are only the first three factors of the equation. The other factors for successful lithopanspermia are the quality, quantity and evolutionary strategy of the transmitted organisms. When expanding into new environments, invading organisms often do not survive in the first attempt and usually require several attempts through propagule pressure to obtain a foothold. There is a crucial difference between this terrestrial situation and the one brought about by lithopanspermia. While invasive species on Earth repeatedly enters a new habitat, a species pragmatically arrives on another solar system body only once; thus, an all-or-nothing response will be in effect. The species must survive in the first attempt, which limits the probability of survival. In addition, evolution sets a boundary through the existence of an inverse proportionality between the exchanges of life between two worlds, thus further restricting the probability of survival. However, terrestrial populations often encounter unpredictable and variable environmental conditions, which in turn necessitates an evolutionary response. Thus, one evolutionary mode in particular, bet hedging, is the evolutionary strategy that best smooth out this inverse proportionality. This is achieved by generating diversity even among a colony of genetically identical organisms. This variability in individual risk-taking increases the probability of survival and allows organisms to colonize more diverse environments. The present analysis to understand conditions relevant to a bacterial colony arriving in a new planetary environment provides a bridge between the theory of bet hedging, invasive range expansion and planetary science.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available