4.4 Article

Catalase improves saccharification of lignocellulose by reducing lytic polysaccharide monooxygenase-associated enzyme inactivation

Journal

BIOTECHNOLOGY LETTERS
Volume 38, Issue 3, Pages 425-434

Publisher

SPRINGER
DOI: 10.1007/s10529-015-1989-8

Keywords

Catalase; Cellulase; Fenton chemistry; Kinetic modelling; Lytic polysaccharide monooxygenase; Pretreated wheat straw; Reactive oxygen species

Funding

  1. European Union's Seventh Framework Programme for research, technological development and demonstration [608473]

Ask authors/readers for more resources

Objectives Efficient enzymatic saccharification of plant cell wall material is key to industrial processing of agricultural and forestry waste such as straw and wood chips into fuels and chemicals. Results Saccharification assays were performed on steam-pretreated wheat straw under ambient and O-2-deprived environments and in the absence and presence of a lytic polysaccharide monooxygenase (LPMO) and catalase. A kinetic model was used to calculate catalytic rate and first-order inactivation rate constants of the cellulases from reaction progress curves. The addition of a LPMO significantly (P < 0.01, Student's T test) enhanced the rate of glucose release from 2.8 to 6.9 h(-1) under ambient O-2 conditions. However, this also significantly (P < 0.01, Student's T test) increased the rate of inactivation of the enzyme mixture, thereby reducing the performance half-life from 65 to 35 h. Decreasing O-2 levels or, strikingly, the addition of catalase significantly reduced (P < 0.01, Student's T test) enzyme inactivation and, as a consequence, higher efficiency of the cellulolytic enzyme cocktail was achieved. Conclusion Oxidative inactivation of commercial cellulase mixtures is a significant factor influencing the overall saccharification efficiency and the addition of catalase can be used to protect these mixtures from inactivation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available