4.7 Article

A Distributed Mobile Fog Computing Scheme for Mobile Delay-Sensitive Applications in SDN-Enabled Vehicular Networks

Journal

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
Volume 69, Issue 5, Pages 5481-5493

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TVT.2020.2980934

Keywords

Vehicular networks; delay-sensitive; fog computing; fog-based base station; software-defined networking; hybrid scheduling

Funding

  1. National Key Research and Development Program [2017YFE0125300]
  2. National Natural Science Foundation of China-Guangdong Joint Fund [U1801264]
  3. Jiangsu Key Research and Development Program [BE2019648]
  4. Open fund of State Key Laboratory of Acoustics [SKLA201901]
  5. National Science and Technology Major Project [2017-V-0011-0062]
  6. China Postdoctoral Science Foundation [2019M661096]

Ask authors/readers for more resources

With the rapid development of intelligent transportation systems, enormous amounts of delay-sensitive vehicular services have been emerging and challenge both the architectures and protocols of vehicular networks. However, existing cloud computing-embedded vehicular networks cannot guarantee timely data processing or service access, due to long propagation delay and traffic congestion at the cloud center. Meanwhile, the current distributed network architecture does not support scalable network management, leading the intelligent data computing policies to be undeployable. With this motivation, we propose to introduce fog computing into vehicular networks and define the Multiple Time-constrained Vehicular applications Scheduling (MTVS) issue. First, to improve the network flexibility and controllability, we introduce a Fog-based Base Station (FBS) and propose a Software-Defined Networking (SDN)-enabled architecture dividing the networks into network, fog, and control layers. To address MTVS issue, instead of normal centralized computing-based approaches, we propose to distribute mobile delay-sensitive task in data-level over multiple FBSs. In particular, we regard the fog layer of SDN-enabled network as an FBS-based network and propose to distribute the computing task based on the FBSs along multiple paths in the fog layer. By Linear Programming, we optimize the optimal data distribution/transmission model by formulating the delay computation model. Then, we propose a hybrid scheduling algorithm including both local scheduling and fog scheduling, which can be deployed on the proposed SDN-enabled vehicular networks. Simulation results demonstrate that our approach performs better than some recent research outcomes, especially in the success rate for addressing MTVS issue.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available