4.7 Article

Modeling and Experimental Validation of Power Electronic Loads and DERs For Microgrid Islanding Simulations

Journal

IEEE TRANSACTIONS ON POWER SYSTEMS
Volume 35, Issue 3, Pages 2279-2288

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPWRS.2019.2953757

Keywords

Load modeling; Voltage control; Transient analysis; Switched mode power supplies; Power system dynamics; Microgrids; Power system stability; Microgrids; islanding; load modeling; dynamic models; distributed generaton

Funding

  1. European Union's Horizon 2020 research and innovation program [773717]
  2. H2020 Societal Challenges Programme [773717] Funding Source: H2020 Societal Challenges Programme

Ask authors/readers for more resources

Microgrid islanding can improve the reliability of distribution networks by enabling load to be supplied even after a fault has occured nearby. The generation and load devices in microgrids are commonly interfaced by power electronics, causing a lack of inertia in the network. When microgrids transition from grid-connected to islanded operation after a fault, fast dynamics occur which have to be evaluated to assess stability during and after the transition. Their stability can be evaluated by time-domain simulations, however detailed and validated models of power electronic loads and distributed energy resources are required. This paper proposes component-based models of different types of power electronic loads, and single and three phase distributed energy resources. The models are validated with a variety of voltage and frequency transient experiments. A case study is performed where a modified version of the Cigre European LV residential network is islanded after a fault occurs. The results of the proposed, constant impedance and exponential load models are compared. The results indicate that the proposed models should be used for accurate analysis of the voltage and frequency stability during microgrid islanding simulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available