4.7 Article

Template-free synthesis of mesoporous γ-alumina with tunable structural properties

Journal

CERAMICS INTERNATIONAL
Volume 42, Issue 3, Pages 4072-4079

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2015.11.079

Keywords

Calcination; Al2O3; gamma-AlOOH; Mesoporous structure; Structural properties

Funding

  1. National Natural Science Foundation of China [51302280]
  2. key Technical Innovation Project [2013-JC-32]
  3. Natural Science Foundation of Qinghai Province [2014-ZJ-936Q]

Ask authors/readers for more resources

Mesoporous gamma-Al2O3 (MA) with agglomerated nanoparticles was successfully synthesized by using aluminum sulfate as inorganic Al resource, and hexamethylene tetramine (HMTA) as precipitant without using any surfactants, via a hydrothermal method. All the experimental processes experienced the hydrolysis, precipitation and calcination steps. The structural and morphological properties of uncalcined and calcined samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetry differential thermal gravity (TG-DTG) and N-2 adsorption-desorption. The bulk density of the sample is 0.682 cm(3) g(-1), and the specific surface area is 273.302 m(2) g(-1). The pore diameters (7.1 nm and 9.7 nm) indicate that a typical bimodal mesoporous structure was formed within MA. In order to tune the structural properties of MA, various kinds of inorganic aluminum sources and precipitating agents were employed to carry out contrast experiments, which leaded to regular variations in the specific surface area (200.898-273.302 m(2) g(-1)), pore volume (0.121-1.327 cm(3) g(-1)) and pore size (3.7-35.9 nm). At the same time, the experimental results also demonstrated that the various kinds of Al resources and precipitants had no effects on the crystal structure of MA. However, the morphologies of samples, such as nanoparticles, short fibers, flower-like and block -shaped, can be controlled effectively. The present study provides a simple and effective approach for preparing MA, and the structural properties of MA can be controlled precisely by carefully choosing aluminum sources and precipitants. The approach of this work not only allows us to investigate the growth mechanism of the final product, but also reduces cost and the environmental pollution effectively than other template methods. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available