4.6 Article

Comparative transcriptomics of toxin synthesis genes between the non-toxin producing dinoflagellate Cochlodinium polykrikoides and toxigenic Alexandrium pacificum

Journal

HARMFUL ALGAE
Volume 93, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.hal.2020.101777

Keywords

Cochlodinium polykrikoides; Alexandrium pacificum; Transcriptome; Polyketide synthase; Saxitoxin; Fatty acid synthase

Funding

  1. National Research Foundation of Korea - Korean Government [2015M1A5A1041805]
  2. Ministry of Oceans and Fisheries, Korea
  3. National Institute of Fisheries Science, South Korea [R2020040]

Ask authors/readers for more resources

In the present study, we extensively characterized potential toxin-related genes, including polyketide synthase (PKS), saxitoxin (STX) and fatty acid synthase (FAS) from the non-toxin producing marine dinoflagellate Cochlodinium polykrikoides, comparing to those of a toxigenic dinoflagellate Alexandrium pacificum. RNA sequencing revealed 50 and 271 PKS contigs from C. polykrikoides and A. pacificum, respectively. According to domain constitute and amino acid alteration, we further classified the dinoflagellate type I PKS genes into 4 subgroups. Type III PKS was first identified in C. polykrikoides. Interestingly, we detected a large number (242 and 288) of homologs of 18 sxt genes from two studied dinoflagellates. Most of the eight key genes (sxtA, sxtB, sxtD, sxtG, sxtH/T, sxtI, sxtS and sxtU) for STX synthesis were detected in both dinoflatellates, whereas a core STX biosynthesis gene sxtG was not detected in C. polykrikoides. This may partially explain the absence of saxitoxin production in C. polykrikoides. In addition, we identified several type I and type II FAS genes, including FabD, FabF, FabG, FabH, FabI, and FabZ, whereas FabB was not found in C. polykrikoides. Overall, the numbers of the toxin-related genes in C. polykrikoides were less than that of A. pacificum. Phylogenetic analyses showed that type I PKS/FASs of dinoflagellates had close relationships with apicomplexans and bacteria. These suggest that the toxin-related PKS and sxt genes are commonly present in toxigenic and non-toxin producing dinoflagellates, and may be involved not only in the toxin synthesis, but also in other related molecular metabolic functions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available