4.7 Article

Evidence of a Supershear Transition Across a Fault Stepover

Journal

GEOPHYSICAL RESEARCH LETTERS
Volume 47, Issue 10, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2020GL087400

Keywords

supershear; step over; transform; back projection; Aleutian; rupture

Funding

  1. National Science Foundation [EAR-1802441]

Ask authors/readers for more resources

Supershear earthquakes, propagating faster than the Earth's shear wave velocity, can generate strong ground motion at distances far from the ruptured fault. Despite the hazards associated with these earthquakes, the exact fault properties that govern their occurrence are not well constrained. Although early studies associated supershear ruptures with simple fault geometries, recent dynamic rupture models have revealed a supershear transition mechanism over complex fault geometries such as fault stepovers. Here we present the first observation of a supershear transition on a fault stepover system during the 2017 M-w 7.7 Komandorsky Islands earthquake. Using a high-resolution back-projection technique, we find that the earthquake's rupture velocity accelerates from 2.1 to 5.0 km/s between two offset faults, demonstrating the viability of a new supershear transition mechanism occurring in nature. Given the fault complexity of the Earth's transform plate boundaries, this result may improve our understanding of supershear rupture processes and their associated hazards.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available