4.7 Article

Novel synthesis of silicon carbide nanotubes by microwave heating of blended silicon dioxide and multi-walled carbon nanotubes: The effect of the heating temperature

Journal

CERAMICS INTERNATIONAL
Volume 42, Issue 15, Pages 17642-17649

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2016.08.080

Keywords

Microwave processing; Solid state reaction; Electron microscopy; Carbide

Funding

  1. Department of Higher Education, Ministry of Higher Education
  2. [FRGS 9003-00441]

Ask authors/readers for more resources

Silicon carbide nanomaterials, especially silicon carbide nanotubes (SiCNTs), are known as excellent materials for high-power and high-temperature harsh environment electronics applications because of the unique properties of SiCNTs, such as a high thermal stability, good chemical inertness and excellent electronic properties. In this article, we presented a novel synthesis of SiCNTs by microwave heating a blend of silicon dioxide (SiO2) and multi-walled carbon nanotubes (MWCNTs) at a ratio of 1:3 at temperatures of 1350 degrees C, 1400 degrees C and 1450 degrees C. The effects of different heating temperatures on the synthesis of SiCNTs were studied. X-ray diffraction revealed the presence of single phase beta-SiC for syntheses conducted at 1400 degrees C and 1450 degrees C. Meanwhile, field-emission scanning electron microscopy images showed that no residual silicon dioxide or MWCNTs was observed with syntheses conducted at 1400 degrees C and 1450 degrees C. High-magnification transmission electron microscopy revealed that the tubular structure of the MWCNTs was preserved and that SiCNTs had a lattice fringe spacing of 0.261 nm corresponding to the (111) plane of beta-SiC. Photoluminescence spectroscopy showed the presence of a beta-SiC peak at a wavelength of 465 nm, and the band gap energy of SiCNTs was 2.67 eV. Fourier transform infrared spectroscopy analysis revealed that the absorption band of the Si-C bond was detected at 803 cm(-1). The purity of SiCNTs synthesized at 1400 degrees C and 1450 degrees C is high, as indicated by the low weight loss in thermo-gravimetric analysis. (C) 2016 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available