4.7 Article

Influence of 2D rGO nanosheets on the properties of OPC paste

Journal

CEMENT & CONCRETE COMPOSITES
Volume 70, Issue -, Pages 48-59

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.cemconcomp.2016.03.005

Keywords

Reduced graphene oxide; Nanocomposite; Pore structure; Mechanical properties; Tomography

Funding

  1. Nanoscience and Nano Mission of the Department of Science and Technology (DST), Government of India [SR/NM/NS-12/2011(G)]

Ask authors/readers for more resources

In this experimental study, the effects of 2D reduced graphene oxide (rGO) sheets on the properties of Portland cement paste in comparison to popularly reviewed nanomaterials like aluminium oxide nanopowder (n-Al2O3) and colloidal silicon dioxide nanoparticles (n-SiO2) were investigated. The addition of 0.02% rGO sheets by weight of cement increased the 7 and 28 days flexural strength up to 70% and 23% respectively when compared to control paste. Moreover, its incorporation substantially decreased the sizes of pores/voids in the paste, even compared to the other nanomaterials, as characterized by Mercury Intrusion Porosimetry (MIP) and 3D X-ray Computed Tomography (CT) aided with image analysis technique. The assessment of Portlandite content by Thermo-gravimetric Analysis did not indicate major differences between the pastes, with the exception of the paste incorporating nano-silica. Microstructural analysis by Fourier Transform Infrared Spectroscopy, X-ray diffraction and Scanning Electron Microscopy did not reveal any major differences between the control paste and the pastes incorporating nanomaterials. The overall results suggest that the performance of rGO was better in comparison to other two nanomaterials, despite the significantly lower amounts that were used in the paste. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available