4.7 Article

HMGB1 impairs endothelium-dependent relaxation in diabetes through TLR4/eNOS pathway

Journal

FASEB JOURNAL
Volume 34, Issue 6, Pages 8641-8652

Publisher

WILEY
DOI: 10.1096/fj.202000242R

Keywords

diabetes; endothelium-dependent relaxation; glycyrrhizin acid; HMGB1

Funding

  1. National Natural Science Foundation of China (NSFC) [81600248, 81670269]
  2. Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation) [2018JJ3744, 2018JJ2563]

Ask authors/readers for more resources

Endothelium-dependent relaxation (EDR) is an initial key step leading to various vascular complications in patients with diabetes. However, the underlying mechanism of EDR impairment in diabetes is not fully understood. Present study defined the role of high-mobility group protein (HMGB1) in EDR related to diabetes. Serum level of HMGB1 was increased in diabetic patients and in db/db mice. Serum HMGB1 level was also positively correlated with HbA1c and negatively correlated with nitric oxide (NO) in diabetic patients. Results from wire myograph showed that recombinant HMGB1 (rHMGB1) was capable of impairing EDR of aortas from wild-type (WT) mice by an eNOS-dependent mechanism. Consistently, HMGB1 inhibitor glycyrrhizin acid (GA) decreased the serum level of HMGB1 and rescued EDR impairment partly in db/db mice. Furthermore, rHMGB1 mediated EDR impairment was abolished in aortas of TLR4(-/-) mice. In addition, high-glucose-induced HMGB1 upregulation and secretion in endothelial cells. In conclusion, HMGB1 contributes to the EDR impairment through TLR4/eNOS pathway in the setting of diabetes. GA as the HMGB1 inhibitor could attenuate EDR impairment in an animal model of diabetes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available