4.6 Article

Interfacial instabilities due to immiscible fluid displacement in circular and non-circular microchannels

Journal

EXPERIMENTAL THERMAL AND FLUID SCIENCE
Volume 113, Issue -, Pages -

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.expthermflusci.2020.110045

Keywords

Two-phase flow; Microfluidic channel; Instabilities; Fluid displacement; Surfactant; Flow regime map

Funding

  1. EPSRC Programme Grant: MEMPHIS Multiscale Examination of Multiphase Physics in Flows [EP/K003976/1]
  2. School of Chemical Engineering, University of Birmingham

Ask authors/readers for more resources

Interfacial instabilities caused by the displacement of one fluid by another were studied experimentally in three horizontal channels of different shape of cross section with hydraulic diameters ranging from 100 to 200 mu m. Flow instabilities were induced by the displacement of a more viscous fluid (silicone oil) by an immiscible, less viscous fluid (aqueous solutions of glycerol) with viscosity ratios between the two fluids ranging from 20 to 100. In addition, the effect of surfactant was studied by the addition of Sodium Dodecyl Sulfate to the displacing fluid. Flow regime maps were developed for the different types of instability observed, with more complex 3-D instabilities shown to occur as the capillary number increases. Whilst fluid viscosities, channel shape and wall wettability were shown to affect the threshold capillary numbers for instabilities, the addition of SDS did not have a significant impact, which is believed to be a consequence of the long contact time between the two fluids during the whole displacement process. It was found that higher flow rates of the displacing fluid (resulting in more complex interfacial instabilities) did not cause a proportionally faster removal of the displaced fluid, which is an important finding for practitioners.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available