4.5 Article

Grazed temporary grass-clover leys in crop rotations can have a positive impact on soil quality under both conventional and organic agricultural systems

Journal

EUROPEAN JOURNAL OF SOIL SCIENCE
Volume 72, Issue 4, Pages 1513-1529

Publisher

WILEY
DOI: 10.1111/ejss.13002

Keywords

ecosystem services; land management; ley-arable rotation; mixed farming; soil functions; soil health

Categories

Funding

  1. Newcastle University
  2. Faculty of Science, Agriculture Engineering

Ask authors/readers for more resources

The study revealed the advantages of organic agricultural systems over conventional systems in terms of soil quality indicators, such as higher microbial biomass carbon and similar potassium, bulk density, aggregate stability, and total carbon. Grazing regime and changes in the proportion of temporary grass-clover leys in crop rotations have a significant impact on soil quality, and mixed farming systems may be crucial for delivering multifunctional agricultural ecosystems.
Soil quality (SQ) is the ability of soil to provide ecosystem functions and services. Implementation of a certain agricultural system can affect SQ and therefore play an essential role in achieving sustainable agriculture. The aim of this study was to explore how agricultural systems (conventional vs. organic), grazing regime (non-grazed vs. grazed) and the different proportions of temporary grass-clover leys in crop rotations (ley time proportion, LTP) affect SQ within a mixed (cropping and pasture/dairy system) commercial farming enterprise in the UK. Seven SQ indicators were evaluated, including chemical (pH; available phosphorus (P); potassium (K)), physical (bulk density, BD; aggregate stability, AS) and biological (total carbon (C); microbial biomass carbon, MBC) sectors. All SQ indicators were measured at three depth intervals (0-0.15, 0.15-0.30, 0.30-0.60 m), except for AS and MBC, which were only considered for the topsoil (0-0.15 m). The findings reflected existing knowledge on the advantages of organic vs. conventional systems for SQ indicators, with the former showing higher MBC and similar K, BD, AS and C in the 0-0.30-m compared to the latter. Lower topsoil available P in organic systems can be related to the lack of measurements in all P pools. When grazing was included: (a) both agricultural systems showed higher topsoil available P, C and MBC; and (b) there was a higher topsoil K in organic systems, whereas it positively affected topsoil BD and C (0.15-0.30 m) in conventional systems. Increasing LTP to 30-40% of the full crop rotation increased topsoil AS and C (0-0.30 m) in a linear fashion. Subsoil conditions (>0.30 m) favoured K, BD and C in conventional systems, but these results should be considered carefully. It was concluded that both organic and conventional systems delivered similar levels of SQ and that reviving mixed farming systems may be a key factor for delivering multifunctional agroecosystems that maintain SQ and optimize ecosystem services. Highlights Single-farm comparison of top- and subsoil quality in organic and non-organic systems. The organic system increased microbial biomass carbon but decreased topsoil available phosphorus. Grazing increased topsoil available phosphorus, carbon concentration and microbial biomass carbon. Temporary leys in rotations increased topsoil aggregate stability and carbon concentration. Mixed farming is a key factor for delivering multifunctional agroecosystems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available