4.4 Article

Nitratation in pilot-scale bioreactors fed with effluent from a submerged biological aerated filter used in the treatment of dog wastewater

Journal

ENVIRONMENTAL TECHNOLOGY
Volume 42, Issue 24, Pages 3852-3862

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/09593330.2020.1742796

Keywords

AOB; kennel wastewater; nitrification; NOB; oxygen

Funding

  1. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)
  2. Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG)
  3. Coordenacao de Aperfeicoamento de Pessoal de nivel Superior (CAPES)

Ask authors/readers for more resources

The study evaluated nitratation under high dissolved oxygen concentrations in laboratory-scale bioreactors, showing that oxygen saturation improved the nitratation step and allowed detection of bacterial genera involved in the process.
Nitrification is a biochemical process that allows oxidation of ammonium ion to nitrite, and nitrite to nitrate in a system. Aerobic processes, such as use of submerged biological aerated filter (SBAF), enable nitrification. However, some variables that are entirely unavailable or not available at the required concentration range may hamper the process. In this study, nitratation under high dissolved oxygen (DO) concentrations was evaluated in laboratory-scale bioreactors containing 10% inoculum (0.5 kg kg(-1)) fed with affluent from a SBAF that receive the sewage generated from washing the bays of a dog kennel. The following variables were monitored over time: ammoniacal nitrogen (12.44-29.62 mg L-1), nitrite (0.28-0.54 mg L-1), nitrate (1.75-3.55 mg L-1), pH (8.11 +/- 0.62), temperature (21.61 +/- 1.24 degrees C) and DO (9.69 +/- 0.36 mg L-1). Quantification of nitrifying bacteria by the multiple tube technique showed the value of 1.4 x 10(12) MPN mL(-1)for ammonia-oxidizing bacteria (AOB) and 9.2 x 10(14) MPN mL(-1) for nitrite-oxidizing bacteria. These values were higher than those found in a synthetic medium, which can be explained by the greater availability of ammonium and nitrite in the effluent. By the extraction of genomic DNA, and PCR, with specific primers, the presence of the AmoA (Ammonia monooxygenase) gene for AOB and of the Nitrobacter was detected in the bioreactor samples. By PCR-DGGE, the sequenced bands showed high similarity with denitrifying bacteria, such as Pseudomonas, Limnobacter, Thauera, Rhodococcus, and Thiobacillus. Thus, the saturation of dissolved oxygen in the system resulted in improvement in the nitratation step and allowed detection of bacterial genera involved in the process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available