4.7 Article

2,4-D adsorption from agricultural subsurface drainage by canola stalk-derived activated carbon: insight into the adsorption kinetics models under batch and column conditions

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 27, Issue 14, Pages 16983-16997

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-020-08211-7

Keywords

2; 4-dichlorophenoxyacetic acid; Empirical kinetic models; Theoretical kinetic models; Canola stalk; Mass balance equation

Ask authors/readers for more resources

In this study, the experimental and kinetic modeling investigations were performed to evaluate the ability of mesoporous and microporous canola stalk-derived activated carbon (CSAC) on 2,4-dichlorophenoxyacetic acid (2,4-D) removal from synthetic and natural water in both batch and continuous systems. Three empirical models (pseudo-first-order equation (PFOE), pseudo-second-order equation (PSOE), and the Elovich equation (EE)) and three theoretical models (film diffusion model (FDM), particle diffusion model (PDM), and second-order chemical reaction rate model (SOCRRM)) were compared in terms of diffusion coefficients, maximum 2,4-D adsorption, and rate constants at various operating conditions. CSAC was prepared at 600 degrees C and activated with water steam under a controlled flow and subsequently characterized by various analytical methods. The results showed that the maximum 2,4-D uptake by CSAC was achieved as 135.8 mg g(-1) under a pH of 2 and an initial 2,4-D concentration of 150 mg L-1. The CSAC removed 38.3% of Na+, 43.49% of K+, 8.96% of Mg2+, 45.14% of Ca2+, 17.2% of Cl-1, 39.48% of HCO3-, 63.74% of SO42-, and 100% of the herbicide from agricultural subsurface drainage water and also retained its usability after regenerated by acetone for five cycles. It was concluded that the 2,4-D was adsorbed on the surface of the CSAC through its aromatic ring interaction with the reactive functional groups of the adsorbent. The model result indicated that the PDM is the best-fitting kinetic model for the adsorption of 2,4-D by CSAC, followed by FDM, SOCRRM, PSOE, PFOE, and EE. The mass balance equation based on PDM describes the dynamic behavior of the column satisfactorily.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available