4.7 Article

Effect of composted organic amendments and zinc oxide nanoparticles on growth and cadmium accumulation by wheat; a life cycle study

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 27, Issue 19, Pages 23926-23936

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-020-08739-8

Keywords

Biochar; Compost; Nanoparticles; Cadmium; Wheat

Ask authors/readers for more resources

Cadmium (Cd) availability in arable soils is a serious issue while little is known about the role of co-composted organic amendments and zinc oxide nanoparticles (ZnO-NPs) foliar spray on biomass and Cd accumulation in wheat grains. The current study investigated the soil application of organic amendment (composted biochar and farmyard manure) at a level of 0, 1, and 2% w/w and foliar spray of ZnO-NPs (0, 100, and 200 mg/L) on biomass, yield, and Cd in wheat grains cultivated in an aged Cd-contaminated agricultural soil. The results indicated that organic amendment increased the biomass, chlorophyll concentrations, yield, and activities of peroxidase and superoxide dismutase of wheat while decreased the electrolyte leakage and Cd concentrations in different parts of wheat such as shoots, roots, husks, and grains. This effect of organic amendment was further enhanced by the foliar spray of ZnO-NPs in a dose-additive manner. Cadmium concentration in grains was below threshold level (0.2 mg/kg DW) for cereals in combined application of 200 mg/L ZnO-NPs and 1% organic amendment as well as in higher treatment (2%) of organic amendment and NPs. Thus, combined use of organic materials and NPs might be a suitable way of reducing Cd and probably other toxic trace element concentrations in wheat and other cereals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available