4.8 Article

Comparative Studies of Environmentally Persistent Free Radicals on Total Particulate Matter Collected from Electronic and Tobacco Cigarettes

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 54, Issue 9, Pages 5710-5718

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.0c00351

Keywords

-

Ask authors/readers for more resources

In the current study, electron paramagnetic resonance (EPR) spectroscopy was employed to measure environmentally persistent free radicals (EPFRs) in the total particulate matter (TPM) of mainstream and sidestream TPM of conventional cigarettes and the TPM of ecigarettes. Comparable concentrations of EPFRs were detected in both sidestream (8.05 +/- 1.32) x 10(4) pmol/g and mainstream TPM (7.41 +/- 0.85) X 10(4) pmol/g of conventional cigarettes. TPM exposure to air resulted in long-lived oxygen centered, secondary radicals with EPR g values of 2.0041 for mainstream and 2.0044 for sidestream. Surprisingly, despite no combustion process, the TPM from e-cigarettes (menthol flavor of NJOY and V2 brands) also contain EPFRs with g values of 2.0031-2.0033, characteristic of carbon centered radicals, while the radical signal in the vanilla flavor of V2 brand was remarkably similar to semiquinones in cigarette smoke with a higher g value (2.0063). The radical concentration in e-cigarettes was much lower as compared to tobacco TPM. Although the production of ROS generated by e-cigarettes is comparatively lower than ROS generated by conventional cigarettes, EPFRs in e-cigarettes appear to be more potent than those in tobacco TPM with respect to hydroxyl radical generation yield per unit EPFR. EPFRs in e-cigarette TPM may be a potential source of health impacts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available