4.5 Article

Effects of Estrogen and Phytoestrogen Treatment on an In Vitro Model of Recurrent Stroke on HT22 Neuronal Cell Line

Journal

CELLULAR AND MOLECULAR NEUROBIOLOGY
Volume 37, Issue 3, Pages 405-416

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s10571-016-0372-1

Keywords

Recurrent stroke; Genistein; 17 beta-estradiol; Apoptosis; Oxidative metabolism; HT22 cells

Funding

  1. European Union FEDER funds, Plan de Ciencia, Tecnologia e Innovacion del Principado de Asturias, FICYT [GRUPIN 14-069]

Ask authors/readers for more resources

An increase of stroke incidence occurs in women with the decline of estrogen levels following menopause. This ischemic damage may recur, especially soon after the first insult has occurred. We evaluated the effects of estrogen and phytoestrogen treatment on an in vitro recurrent stroke model using the HT22 neuronal cell line. HT22 cells were treated with 17 beta-estradiol or genistein 1 h after the beginning of the first of two oxygen and glucose deprivation/reoxygenation (OGD/R) cycles. During the second OGD, there was a deterioration of some components of the electron transport chain, such as cytochrome c oxidase subunit 1 with a subsequent increase of reactive oxygen species (ROS) production. Accordingly, there was also an increase of apoptotic phenomena demonstrated by poly(ADP-ribose) polymerase 1 cleavage, Caspase-3 activity, and Annexin V levels. The recurrent ischemic injury also raised the hypoxia-inducible factor 1 alpha and glucose transporter 1 levels, as well as the ratio between the lipidated and cytosolic forms of microtubule-associated protein 1A/1B-light chain 3 (LC3-II/LC3-I). We found a positive effect of estradiol and genistein treatment by partially preserving the impaired cell viability after the recurrent ischemic injury; however, this positive effect does not seem to be mediated neither by blocking apoptosis processes nor by decreasing ROS production. This work contribute to the better understanding of the molecular mechanisms triggered by recurrent ischemic damage in neuronal cells and, therefore, could help with the development of an effective treatment to minimize the consequences of this pathology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available