4.8 Article

Temporal variations of six ambient criteria air pollutants from 2015 to 2018, their spatial distributions, health risks and relationships with socioeconomic factors during 2018 in China

Journal

ENVIRONMENT INTERNATIONAL
Volume 137, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envint.2020.105556

Keywords

Air pollution; Health risks; Air pollutants; Annual variations; Socioeconomic factors

Funding

  1. National Key Research and Development Program of China [2018YFC0213802]
  2. National Natural Science Foundation of China [21976094, 21777073]
  3. Innovative Project for Graduate Student of Jiangsu Province [KYCX17_0893]

Ask authors/readers for more resources

Air pollution events occurred frequently in China, and tremendous efforts were devoted to the reduction of air pollution in recent years. Here, analysis of ambient monitoring data of six criteria air pollutants from 367 Chinese cities during 2015-2018, showed that PM2.5, PM10, SO2 and CO were reduced significantly by 22.1%, 13.5%, 46.4% and 21.5%, respectively, NO2 reduction was less significant (6.3%) while O-3 level instead increased over China (13.7%). Spatial distribution, seasonal, monthly and diurnal variations of the air pollutants during 2018, implicated of effective control measures, were discussed in details, especially for the five key densely populated regions of Jing-Jin-Ji (JJJ), Fen Wei Plains (FWP), Yangtze River Delta (YRD), Sichuan Basin (SCB) and Pearl River Delta (PRD). Moreover, excess health risks (ERs) of the six pollutants were estimated for 2018, and such risks was two times higher if the World Health Organization (WHO) air quality guideline rather than Chinese guideline was adopted. PM10 rather than PM2.5 was the dominant contributor to ERs, and the case with both PM2.5 and PM10 exceeding threshold values occupied similar to 1/3 of total days, yet contributed similar to 2/3 of total ERs. For 2018, the health-risk based air quality index (HAQI) was further calculated by combining health risks from multiple pollutants, and it was found that high HAQI mostly distributed in North China Plain (NCP). similar to 15%, similar to 85% and similar to 95% people in YRD, FWP and JJJ were exposed to polluted air (HAQI > 100), and population-normalized HAQI further added the inequality, JJJ and a small region of SCB had much higher HAQI (> 280). Investigations on HAQI with socioeconomic factors show that total population, population density and built-up area presented an inverted U-shape, suggesting existence of Environmental Kuznets Curve (EKC), while a positive relationship was found between HAQI and share of secondary industry. Multiple regression analysis suggested that built-up area was the most prominent factor to HAQI, followed by the gross domestic product (GDP). The findings here demonstrate in great details the current characteristics of air pollution and its associated health risks in China, therefore providing important implications for effective air pollution control strategies in near future for different regions of China.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available