4.8 Article

Organizing mechanism-related information on chemical interactions using a framework based on the aggregate exposure and adverse outcome pathways

Journal

ENVIRONMENT INTERNATIONAL
Volume 138, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envint.2020.105673

Keywords

Chemical interactions; Mixture toxicity; Adverse outcome pathway; Aggregate exposure pathway

Funding

  1. U.S. Environmental Protection Agency
  2. U.S. Army Engineer Research and Development Center

Ask authors/readers for more resources

This paper presents a framework for organizing and accessing mechanistic data on chemical interactions. The framework is designed to support the assessment of risks from combined chemical exposures. The framework covers interactions between chemicals that occur over the entire source-to-outcome continuum including interactions that are studied in the fields of chemical transport, environmental fate, exposure assessment, dosimetry, and individual and population-based adverse outcomes. The framework proposes to organize data using a semantic triple of a chemical (subject), has impact (predicate), and a causal event on the source-to-outcome continuum of a second chemical (object). The location of the causal event on the source-to-outcome continuum and the nature of the impact are used as the basis for a taxonomy of interactions. The approach also builds on concepts from the Aggregate Exposure Pathway (AEP) and Adverse Outcome Pathway (AOP). The framework proposes the linking of AEPs of multiple chemicals and the AOP networks relevant to those chemicals to form AEP-AOP networks that describe chemical interactions that cannot be characterized using AOP networks alone. Such AEP-AOP networks will aid the construction of workflows for both experimental design and the systematic review or evaluation performed in risk assessments. Finally, the framework is used to link the constructs of existing component-based approaches for mixture toxicology to specific categories in the interaction taxonomy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available