4.6 Article

Proposal and Thermodynamic Assessment of S-CO2 Brayton Cycle Layout for Improved Heat Recovery

Journal

ENTROPY
Volume 22, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/e22030305

Keywords

S-CO2 Brayton cycle; exergy efficiency; irreversibility; thermal efficiency; improved heat recovery

Ask authors/readers for more resources

This article deals with the thermodynamic assessment of supercritical carbon dioxide (S-CO2) Brayton power cycles. The main advantage of S-CO2 cycles is the capability of achieving higher efficiencies at significantly lower temperatures in comparison to conventional steam Rankine cycles. In the past decade, variety of configurations and layouts of S-CO2 cycles have been investigated targeting efficiency improvement. In this paper, four different layouts have been studied (with and without reheat): Simple Brayton cycle, Recompression Brayton cycle, Recompression Brayton cycle with partial cooling and the proposed layout called Recompression Brayton cycle with partial cooling and improved heat recovery (RBC-PC-IHR). Energetic and exergetic performances of all configurations were analyzed. Simple configuration is the least efficient due to poor heat recovery mechanism. RBC-PC-IHR layout achieved the best thermal performance in both reheat and no reheat configurations (eta th = 59.7% with reheat and eta th = 58.2 without reheat at 850 degrees C), which was due to better heat recovery in comparison to other layouts. The detailed component-wise exergy analysis shows that the turbines and compressors have minimal contribution towards exergy destruction in comparison to what is lost by heat exchangers and heat source.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available