4.7 Review

γ-Aminobutyric acid (GABA) signalling in plants

Journal

CELLULAR AND MOLECULAR LIFE SCIENCES
Volume 74, Issue 9, Pages 1577-1603

Publisher

SPRINGER BASEL AG
DOI: 10.1007/s00018-016-2415-7

Keywords

gamma-Aminobutyric acid; Aluminium-activated malate transporters; GABA(A) receptors; Signalling; GABA metabolism; Carbon-nitrogen balance; Stress response; Topology; Pharmacology

Funding

  1. Centre of Excellence in Plant Energy Biology, Australian Research Council [CE140100008]
  2. Australian Research Council [FT130100709]
  3. Australian Research Council [FT130100709] Funding Source: Australian Research Council

Ask authors/readers for more resources

The role of gamma-aminobutyric acid (GABA) as a signal in animals has been documented for over 60 years. In contrast, evidence that GABA is a signal in plants has only emerged in the last 15 years, and it was not until last year that a mechanism by which this could occur was identified-a plant 'GABA receptor' that inhibits anion passage through the aluminium-activated malate transporter family of proteins (ALMTs). ALMTs are multigenic, expressed in different organs and present on different membranes. We propose GABA regulation of ALMT activity could function as a signal that modulates plant growth, development, and stress response. In this review, we compare and contrast the plant 'GABA receptor' with mammalian GABA(A) receptors in terms of their molecular identity, predicted topology, mode of action, and signalling roles. We also explore the implications of the discovery that GABA modulates anion flux in plants, its role in signal transduction for the regulation of plant physiology, and predict the possibility that there are other GABA interaction sites in the N termini of ALMT proteins through in silico evolutionary coupling analysis; we also explore the potential interactions between GABA and other signalling molecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available