4.7 Article

Use of Sulfur-Free Lignin as a novel soil additive: A multi-scale experimental investigation

Journal

ENGINEERING GEOLOGY
Volume 269, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.enggeo.2020.105551

Keywords

Sulfur-Free Lignin; Sustainable soil improvement; Curing time; Eco-friendly; Multi-scale investigation

Funding

  1. Key Program of International (Regional) Cooperation and Exchange of National Natural Science Foundation [41820104001]
  2. State Key Program of the National Natural Science Foundation of China [41430642]
  3. Special Fund for Major Scientific Instruments of the National Natural Science Foundation of China [41627801]
  4. State Scholarship Fund of China Scholarship Council (CSC) [201806170226]

Ask authors/readers for more resources

With the rapid process of urbanization, more and more infrastructures are inevitably built on problematic soils, which require improvement and reinforcement. In this study, a novel material Sulfur-Free Lignin (SFL), which is a by-product of bioethanol industry, was used to improve the soil's geotechnical behavior as a sustainable, nontoxic and eco-friendly stabilizer. To systematically investigate the geotechnical properties of SFL-stabilized soil, the natural soil was modified by adding five different contents (3, 7, 10, 12 and 15%) and then a series of geotechnical experiments including Unconfined Compressive Strength (UCS), Atterberg limits tests, electrical resistivity and pH were carried out after 1, 7, 28, 60-days curing. In addition, to investigate the stabilization mechanism, the mineral composition, function group and microstructure characteristic were also studied through X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Mercury Intrusion Porosity (MIP) and Scanning Electron Microscopy (SEM) tests. The test results demonstrate that with increasing SFL content, the electrical resistivity gradually decreases, on the contrary, the Atterberg limits show a slight increase. However, the pH values are unchanged indicating the SFL would not lead to pH contamination risk. The 10% SFL-stabilized soil after 60 days of curing shows the greatest strength, which increases about 600% compared to the natural soil. Furthermore, the relationship between stiffness and UCS is generally proportional. According to the results of MIP and SEM, the strength improvement can be attributed to a smaller total volume of pores, reduction in the mean size of the pores and stronger bonds formed by SFL between isolated grains. The results of XRD and FTIR tests reveal there is no new mineral nor function group generated after adding SFL. Above all, the natural soil stabilized by SFL shows a satisfactory engineering performance and it would be a win-win solution to utilize SFL as a soil stabilizer for soil improvement in civil engineering and for waste elimination in bioethanol industry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available