4.5 Article

Simultaneous Synthesis of Heat Exchanger Networks Considering Steam Supply and Various Steam Heater Locations

Journal

ENERGIES
Volume 13, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/en13061467

Keywords

improved superstructure; HENs; utility system; steam heater; MINLP

Categories

Funding

  1. Natural Science Foundation of China [21878034, 21776035]
  2. Fundamental Research Fund for Central Universities of China [DUT18LAB11]

Ask authors/readers for more resources

In process industries, the heating gap in heat exchanger networks (HENs) is normally compensated by the steam generated from a utility system, thus these two mutually influencing systems should be designed as a whole through establishing structural interrelationships. In this work, an improved stage-wise superstructure of HENs is proposed to integrate with a Rankine cycle-based utility system. Inner- and inter-stage heaters are considered in the new structure. Furthermore, the selection of steam in different levels is also investigated, extending the possibilities of steam utilization in HENs and generation in utility systems. The presented methodology is able to realize the optimal design of HENs by considering the supply and utilization of steam. Heaters' allocations, matches of streams, steam distribution and utilization are optimized accompanying with the trade-off amongst equipment investment, fuel consumption and power generation in objective, which is highly related to the final structure of the system. The optimization problem is formulated into a mixed -integer non-linear programming (MINLP) model and solved towards the lowest total annual cost (TAC) of the entire system. Finally, a case study with two scenarios is studied. The detailed results are given and analyzed to demonstrate the benefit from structural improvement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available