4.7 Article

Rapid biodegradation and biofilm-mediated bioremoval of organophosphorus pesticides using an indigenous Kosakonia oryzae strain-VITPSCQ3 in a Vertical-flow Packed Bed Biofilm Bioreactor

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 192, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2020.110290

Keywords

Organophosphorous; Profenofos; Quinalphos; Biodegradation; Biofilm-mediated bioremoval

Funding

  1. Vellore Institute of Technology

Ask authors/readers for more resources

The widespread use of pesticides has been one of the major anthropogenic sources of environmental pollution. Organophosphorus (OP) pesticides are predominantly used in agriculture due to their broad-spectrum insecticidal activity and chemical stability. The study was focused on the biodegradation of OP pesticides, Profenofos (PF) and Quinalphos (QP) in culture media using bacterium isolated from wetland paddy rhizosphere. The strain VITPSCQ3 showed higher pesticide tolerance, efficient biofilm formation and was capable of synthesizing organophosphate degrading enzymes. Based on the 16S rRNA gene sequencing the isolate exhibited maximum sequence similarity with Kosakinia oryzae (GenBank accession number: KR149275). Biodegradation assay with various concentrations of PF and QP (200, 400, 600 and 800 mg L-1) showed maximum degradation up to 82% and 92% within 48 h. The kinetic studies revealed the biodegradation rates (k) to be 0.0844 min(-1) and 0.107 min(-1) with half-lives (h) of 18 h and 14.8 h for PF and QP. The degradation products were identified by GCMS and possible degradation pathways were proposed using Insilico techniques. To the best of our knowledge, this is the first report on the biodegradation of PF and QP using Kosakonia oryzae. Bioremoval of PF and QP from aqueous solution was performed using the biofilm of VITPSCQ3 developed on selected substrates in a circulating Vertical-flow packed-bed biofilm (VFPBB) bioreactor. Charcoal, gravel and mushroom (Agaricus bisporus) were used as biofilm carriers. Mushroom showed strong biofilm formation with optimum biodegradation capacity of up to 96% for PF and 92% for QP within 120 min reaction time.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available