4.7 Article

Developmental arrest of Drosophila larvae elicits presynaptic depression and enables prolonged studies of neurodegeneration

Journal

DEVELOPMENT
Volume 147, Issue 10, Pages -

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.186312

Keywords

Homeostasis; Synapse; Neurotransmission; Drosophila; Plasticity; Neurodegeneration

Funding

  1. National Institute of General Medical Sciences [F32GM130108]
  2. National Institute of Neurological Disorders and Stroke [NS111414, NS091546]

Ask authors/readers for more resources

Synapses exhibit an astonishing degree of adaptive plasticity in healthy and disease states. We have investigated whether synapses also adjust to life stages imposed by novel developmental programs for which they were never molded by evolution. Under conditions in which Drosophila larvae are terminally arrested, we have characterized synaptic growth, structure and function at the neuromuscular junction (NMJ). Although wild-type larvae transition to pupae after 5 days, arrested third instar (ATI) larvae persist for 35 days, during which time NMJs exhibit extensive overgrowth in muscle size, presynaptic release sites and postsynaptic glutamate receptors. Remarkably, despite this exuberant growth, stable neurotransmission is maintained throughout the ATI lifespan through a potent homeostatic reduction in presynaptic neuro transmitter release. Arrest of the larval stage in stathmin mutants also reveals a degree of progressive instability and neurodegeneration that was not apparent during the typical larval period. Hence, an adaptive form of presynaptic depression stabilizes neurotransmission during an extended developmental period of unconstrained synaptic growth. More generally, the ATI manipulation provides a powerful system for studying neurodegeneration and plasticity across prolonged developmental timescales.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available