4.7 Article

Improvement of bond performance between concrete and CFRP bars with optimized additional aluminum ribs anchorage

Journal

CONSTRUCTION AND BUILDING MATERIALS
Volume 241, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2020.118012

Keywords

Bond performance; CFRP bars; Additional ribs; Bond length; Bonding mechanism

Funding

  1. National Key Research and Development Program of China [2017YFC0703000]
  2. Natural Science Foundation of Jiangsu Province [BK20191146]
  3. National Natural Science Foundation of China [51525801]

Ask authors/readers for more resources

The slippage of fiber-reinforced polymer (FRP) bars in concrete occurs frequently because of the insufficient anchorage capacity of FRP bars in concrete, and it considerably affects the reliable application of FRP bars as reinforcing steel bars in civil engineering structures, especially in prestressed structures. In this paper, an optimized additional rib (AR) anchorage system was applied to the carbon-FRP (CFRP) bars to improve this weak anchorage characteristic of CFRP bars. The extrusion technology of the additional ribs was optimized, and only a slight deterioration of approximately 1.85% in the tensile strength of the CFRP bars was noted, compared to that corresponding to our previous extrusion technology (a loss of approximately 7.84%). Subsequently, pull-out tests were performed to investigate the influence of the number of additional ribs and bond length on the bond performance between the CFRP bars and concrete. The experimental results demonstrated that the existence of additional ribs, which produced an end pressure, transformed the bond stress transferring mechanism and reduced the radial force exerted on the surrounding concrete, thereby delaying the occurrence of the concrete splitting failure. In addition, the CFRP bars anchored with the additional ribs exhibited a remarkable enhancement in the pull-out strength, whereas this improvement was influenced by the embedment length of the CFRP bars and the ratio of the additional rib length to the bond length (l(ar)/L). Finally, an empirical expression to calculate the development length of the CFRP bars with and without an AR anchorage was proposed and compared with the expressions provided in the existing design standards. It was concluded that the applied AR anchorage system could effectively reduce the development length of the CFRP bars. Compared to that of the control specimens, there was approximately 16.7% decrease in the development length for the specimens anchored with one additional rib. (C) 2020 Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available