4.7 Article

A hierarchical approach to the a posteriori error estimation of isogeometric Kirchhoff plates and Kirchhoff-Love shells

Journal

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2020.112919

Keywords

Isogeometric analysis; A posteriori error estimator; Adaptivity; Hierarchical B-splines; Shells; Plates

Funding

  1. European Research Council [694515]

Ask authors/readers for more resources

This work focuses on the development of a posteriori error estimates for fourth-order, elliptic, partial differential equations. In particular, we propose a novel algorithm to steer an adaptive simulation in the context of Kirchhoff plates and Kirchhoff-Love shells by exploiting the local refinement capabilities of hierarchical B-splines. The method is based on the solution of an auxiliary residual-like variational problem, formulated by means of a space of localized spline functions. This space is characterized by C-1 continuous B-splines with compact support on each active element of the hierarchical mesh. We demonstrate the applicability of the proposed estimator to Kirchhoff plates and Kirchhoff-Love shells by studying several benchmark problems which exhibit both smooth and singular solutions. In all cases, we obtain optimal asymptotic rates of convergence for the error measured in the energy norm and an excellent approximation of the true error. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available