4.6 Article

Loss of all 3 Extended Synaptotagmins does not affect normal mouse development, viability or fertility

Journal

CELL CYCLE
Volume 15, Issue 17, Pages 2360-2366

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/15384101.2016.1203494

Keywords

Extended-Synaptotagmin; E-Syt1; E-Syt2; E-Syt3; ESyt1; ESyt2; ESyt3; Expression Profiling; Developmental Expression Profiling; Gene Deletion; Viability' Mouse

Categories

Funding

  1. Cancer Research Society (CRS/SRC)
  2. National Science and Engineering Council (NSERC) of Canada
  3. Fonds de recherche du Quebec-Sante (FRQS)

Ask authors/readers for more resources

The extended synaptotagmins, E-Syt1, 2 and 3, are multiple C2 domain membrane proteins that are tethered to the endoplasmic reticulum and interact in a calcium dependent manner with plasma membrane phospholipids to form endoplasmic reticulum - plasma membrane junctions. These junctions have been implicated in the exchange of phospholipids between the 2 organelles. The E-Syts have further been implicated in receptor signaling and endocytosis and can interact directly with fibroblast growth factor and other cell surface receptors. Despite these multiple functions, the search for a requirement in vivo has been elusive. Most recently, we found that the genes for E-Syt2 and 3 could be inactivated without effect on mouse development, viability, fertility or morphology. We have now created insertion and deletion mutations in the last of the mouse E-Syt genes. We show that E-Syt1 is specifically expressed throughout the embryonic skeleton during the early stages of chrondrogenesis in a pattern quite distinct from that of E-Syt2 or 3. Despite this, E-Syt1 is also not required for mouse development and propagation. We further show that even the combined inactivation of all 3 E-Syt genes has no effect on mouse viability or fertility in the laboratory. However, this inactivation induces an enhancement in the expression of the genes encoding Orp5/8, Orai1, STIM1 and TMEM110, endoplasmic reticulum - plasma membrane junction proteins that potentially could compensate for E-Syt loss. Given the multiple functions suggested for the E-Syts and their evolutionary conservation, our unexpected findings suggest that they may only provide a survival advantage under specific conditions that have as yet to be identified.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available