4.7 Article

Au nanozyme-driven antioxidation for preventing frailty

Journal

COLLOIDS AND SURFACES B-BIOINTERFACES
Volume 189, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.colsurfb.2020.110839

Keywords

Phytochemical Au nanoparticle; Anti-aging; Frailty; Senescence; Nanozyme

Funding

  1. National Research Foundation of Korea (NRF) - Ministry of Science, ICT & Future Planning [NRF-2017R1A4A1015627, NRF2019R1A2C2007825, NRF-2019R1A2B5B01070133, NRF2019R1A4A1024116]
  2. Ministry of Education [NRF2019R1I1A1A01063945]
  3. Main Research Program of the Korea Food Research Institute - Ministry of Science, ICT & Future Planning [E0187303-02]
  4. 2018 Post-Doc. Development Program of Pusan National University

Ask authors/readers for more resources

From senescence and frailty that may result from various biological, mechanical, nutritional, and metabolic processes, the human body has its own antioxidant defense enzymes to remove by-products of oxygen metabolism, and if unregulated, can cause several types of cell damage. Herein, an antioxidant, artificial nanoscale enzyme, called nanozyme (NZs), is introduced that is composed of Au nanoparticles (NPs) synthesized with a mixture of two representative phytochemicals, namely, gallic acid (GA) and isoflavone (IF), referred to as GI-Au NZs. Their unique antioxidant and anti-aging effects are monitored using Cell Counting Kit-8 and senescence-associated beta-galactosidase assays on neonatal human dermal fibroblasts (nHDFs). Furthermore, alterations in epidermal thickness and SOD activity are measured under ultraviolet light to investigate the effects of the topical application of NZs on the histological structure and antioxidant activity in hairless mice skin. Then, hepatotoxicity and nephrotoxicity in the hairless mice are monitored. It is concluded that the NZs can effectively prevent serial passage-induced senescence in nHDFs, as well as oxidative stress in mice skin, suggesting a range of strategies to further develop novel therapeutics for acute frailty.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available