4.4 Article

Adsorption process for phospholipids of different chain lengths at a fluorocarbon/water interface studied by Du Nouy ring and spinning drop

Journal

COLLOID AND POLYMER SCIENCE
Volume 298, Issue 4-5, Pages 407-417

Publisher

SPRINGER
DOI: 10.1007/s00396-020-04618-3

Keywords

Interfacial tension; Phospholipids; Fluorocarbon; Adsorption; Du Nouy ring; Spinning drop

Ask authors/readers for more resources

Fluorocarbons are novel systems in the fast-growing fields of diverse biomedical applications and fluorocarbon-water emulsions. However, characterization of these systems with modern measuring techniques such as drop profile analysis tensiometry is almost impossible because of practically identical refractive indexes and high-density differences. Due to the material properties of the fluorocarbon-water system, the invasive Du Nouy ring is the most appropriate method to measure interfacial tensions over long times. However, the influence of the ring on a fluorocarbon/water interface packed with phospholipids needs careful analysis. For the proof of methodology, the spinning drop tensiometry was used for comparison as a non-invasive technique to measure interfacial tension between water and perfluoroperhydrophenanthrene (PFPH) covered by 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) proving almost identical results. This demonstrates the validity of the invasive measurement technique for the studied system. The Du Nouy ring method was applied for further measurements of phospholipids with different chain lengths (1,2-dmyristoyl-sn-glycero-3-phostphatidylcholine, DMPC; 1,2-distearoyl-sn-glycero-3-phosphatidylcholine, DSPC) which revealed a difference in interfacial adsorption kinetics and equilibrium tensions. The Du Nouy ring tensiometry is appropriate to examine the slow adsorption kinetics of phospholipids emulsifying fluorocarbons. The results enable functional optimization of fluorocarbon emulsions regarding physical emulsification parameters and the selection of lipids.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available