4.6 Article

The HepaRG cell line, a superior in vitro model to L-02, HepG2 and hiHeps cell lines for assessing drug-induced liver injury

Journal

CELL BIOLOGY AND TOXICOLOGY
Volume 32, Issue 1, Pages 37-59

Publisher

SPRINGER
DOI: 10.1007/s10565-016-9316-2

Keywords

Drug-induced liver injury; HepaRG cell line; CCK-8 assay; High-content screening; Malate dehydrogenase

Funding

  1. National Key Technology R&D Program of China [2012ZX09302001]

Ask authors/readers for more resources

Drug-induced liver injury (DILI) is a leading cause of discontinuation of new drug approval or withdrawal of marketed medicine based on safety due to organ vulnerability. The aim of this research is to investigate the potential abilities of four different in vitro cell models (L-02, HepG2, HepaRG, and hiHeps cell lines) in assessing marketed drugs labeled with apparently different types of liver injury. A total of 17 drugs with versatile pharmacological profiles were chosen, of which, 14 drugs are recognized as DILI agents and 3 drugs are DILI irrelevant. Preliminary cellular screening assays indicated that the HepaRG cell line had an advantage over other cell lines in predicting drugs associated with DILI in vitro as it had the highest Youden's index (71.4 %). A multi-parametric screening assay showed that oxidative stress, mitochondrial damage, and disorders of neutral lipid metabolism were changed notably in the HepaRG cell line after DILI-related drugs exposure, accounting for its high sensitivity in comparison with other three cell lines. In addition, aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and malate dehydrogenase (MDH) all correlated with the cytotoxic effects of diclofenac sodium (p < 0.05), buspirone hydrochloride (p < 0.01), and danazol (p < 0.01) in the HepaRG cell line. We conclude that the HepaRG cell line is a superior in vitro cell model to other three cell lines for evaluating drugs with DILI potential.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available