4.6 Article

Using nanofluid saturated porous media to enhance free convective heat transfer around a spherical electronic device

Journal

CHINESE JOURNAL OF PHYSICS
Volume 70, Issue -, Pages 106-116

Publisher

ELSEVIER
DOI: 10.1016/j.cjph.2020.03.023

Keywords

Heat transfer; Natural convection; Porous media; Nanofluid; Spherical cavity; Electronics thermal engineering

Ask authors/readers for more resources

The thermophysical properties of nanofluid-saturated porous media were used to optimize the thermal design of a spherical electronic device in this study. Free convective heat transfer was quantified using the finite volume method and the SIMPLE algorithm, showing that it increases systematically with the Rayleigh number. The average Nusselt number also increases with the Rayleigh number according to a conventional power type law, with moderate influence of the volume fraction in the 2-10% range.
The thermophysical properties of the nanofluid saturated porous media are used in this work to optimize the thermal design of a spherical electronic device. Quantification of free convective heat transfer has been numerically determined by means of the finite volume method using the SIMPLE algorithm. The Rayleigh number based on the component diameter and water characteristics varies between 6.5x10(6) and 1.32x10(9), given the power generated during operation of this active component. The latter is disposed in the center of another sphere maintained isothermal. Its cooling is achieved by means of a porous medium saturated with a water based - Copper nanofluid whose volume fraction varies between 0 (pure water) and 10%. The thermal conductivity of the porous material's matrix ranges from 0 to 40 times that of the base fluid (water). Results of this work show that convective heat transfer systematically increases with this ratio according to a function depending on the Rayleigh number in the whole range of the considered volume fraction. The average Nusselt number also increases with the Rayleigh number according to a conventional power type law while influence of the fraction volume is moderate in the 2-10% range. The results are in agreement with those of previous works for particular thermal conditions. In order to optimize the thermal design of this electronic device, a correlation is proposed, allowing determination of the Nusselt number for any combination of the three influencing parameters for applications in various engineering fields, includind electronics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available