4.7 Article

Insights into the electrochemical degradation of sulfamethoxazole and its metabolite by Ti/SnO2-Sb/Er-PbO2 anode

Journal

CHINESE CHEMICAL LETTERS
Volume 31, Issue 10, Pages 2673-2677

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cclet.2020.03.073

Keywords

Electrochemical degradation; Sulfamethoxazole and metabolite; Degradation mechanism; Quantitative structure-activity relationship

Funding

  1. National Science Fund for Distinguished Young Scholars [51625801]
  2. Guangdong Innovation Team Project for Colleges and Universities [2016KCXTD023]
  3. Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme
  4. China Postdoctoral Science Foundation [2018M643671]

Ask authors/readers for more resources

Electrochemical degradation of sulfamethoxazole (SMX) and its metabolite acetyl-sulfamethoxazole (Ac-SMX) by Ti/SnO2-Sb/Er-PbO2 were investigated. Results indicated that the electrochemical degradation of SMX and Ac-SMX followed pseudo-first-order kinetics. The rate constants of SMX and Ac-SMX were 0.268 and 0.072 min(-1) at optimal current density of 10 and 14 mA/cm(2), respectively. Transformation products of SMX and Ac-SMX were identified and the possible degradation pathways, including the cleavage of S-N bond, opening ring of isoxazole and nitration of amino group, were proposed. Total organic carbon removal of SMX was nearly 63.2% after 3 h electrochemical degradation. 22.4% nitrogen of SMX was transformed to NO3-, and 98.8% sulfur of SMX was released as SO42-. According to quantitative structure-activity relationship model, toxicities of SMX and Ac-SMX to aquatic organisms significantly decreased after electrochemical degradation. Electric energy consumption for 90% SMX and Ac-SMX degradation was determined to be 0.58-8.97 and 6.88-44.19 Wh/L at different experimental conditions, respectively. Compared with parent compound SMX, the metabolite Ac-SMX is more refractory and toxic, which emphasizes the importance of taking its metabolites into account when investigating the disposal of pharmaceuticals from wastewater. (C) 2020 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available