4.7 Article

Cultivation of granules containing anaerobic decolorization and aerobic degradation cultures for the complete mineralization of azo dyes in wastewater

Journal

CHEMOSPHERE
Volume 246, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.125753

Keywords

Azo dyes; Aromatic amines; Granules; Decolorization; Degradation

Funding

  1. National Natural Science Foundation of China, China [21876115, 21577093, 31500321]

Ask authors/readers for more resources

Granules which could efficiently mineralize azo dyes were cultivated through immobilization of aerobic degradation strains in a core composed of anaerobic decolorization cultures. The core was obtained in a up-flow anaerobic sludge blanket (UASB) reactor incubated with anaerobic decolorization bacteria. Aerobic degradation strains were then grown on the surface of the anaerobic core in a sequencing batch reactor (SBR). Three of the granules' surface layers demonstrated the occurrence of immobilization. The granulation process was monitored with 16S rDNA high throughput sequencing. Anaerobic decolorization cultures belonging to the genera of unclassified, Levilinea, and Petrimonas and the aerobic degradation genera of Thauera, unclassified, Thermomonas, and Ottowia were successfully fixed in the granules. The obtained granules were capable of decolorizing azo dyes under anaerobic situation, and the generated aromatic amines were then completely mineralized in aerated environment. Comparative studies on the relationship between removed contaminates and typical components concentrations in low to high strength azo dye wastewater showed that the granules have great potentials in treating wastewater with different complexity. The removal efficiency of COD and TOC was not restricted by loading concentrations. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available