4.7 Article

Transfer potentials of antibiotic resistance genes in Escherichia spp. strains from different sources

Journal

CHEMOSPHERE
Volume 246, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.125736

Keywords

Multidrug-resistant Escherichia sp.; Antibiotic resistance genes; Mobile genetic elements; Gene cassettes; Horizontal gene transfer

Funding

  1. Key Project of National Natural Science Foundation of China-Henan Joint Fund [U1904205]
  2. National Natural Science Foundation of China [NSFC 21477035]

Ask authors/readers for more resources

Multidrug-resistant Escherichia coli and antibiotic-resistance genes (ARGs) present a danger to public health. However, information on the dissemination potentials of antibiotic resistance among bacteria from different environments is lacking. We isolated multiple antibiotic-resistant Escherichia spp. from animal farms, hospitals, and municipal wastewater-treatment plants (MWWTPs) using culture-based methods, and carried out resistance phenotype and gene analyses. Thirty-five isolates of multiple antibiotic-resistant Escherichia spp. were further screened to detect 61 ARGs, 18 mobile genetic elements (MGEs), and gene cassettes. The isolates from livestock manure and MWWTPs showed greater diversity in plasmid profiling than hospital wastewater. Each Escherichia sp. carried 21-26 ARGs and 8-12 MGEs. In addition, 11 gene cassettes were detected in 34 Escherichia isolates, with greater diversity in livestock manure and MWWTPs than in hospital wastewater. The results indicated that the potential for ARG transfer was higher in livestock manure and MWWTPs compared with human clinical sources, possibly related to the high occurrence of both residual antibiotics and heavy metals in these environments. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available